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Abstract—Requirement dependencies affect many activities in
the software development life cycle such as design, implementa-
tion, testing, release planning and change management. They are
the basis for various software development decisions. However,
requirements dependencies extraction is not only error-prone but
also a cognitively and computationally complex problem that
consumes substantial efforts, since most of the requirements
are documented in natural language. This paper proposes a
novel approach to extracts requirements dependencies utilizing
natural-language processing (NLP) and weakly supervised learn-
ing (WSL) in two stages. In the first stage, binary dependencies
(basic dependencies:dependent/independent) are identified, which
are further analyzed to detect the type of the dependency
in the second stage. An initial evaluation of this approach
on the PURE data set - European Rail Traffic Management
System - was carried out using three machine learners (Random
Forest, Support Vector Machine and Naive Bayes), which were
then compared and tested. Results showed that all the three
learners exhibited similar accuracy measures, while SVM needed
additional parameter tuning. The machine learners’ accuracy
was further improved by applying weakly supervised learning
to generate pseudo annotations for unlabelled data. Based on
these results, agenda is to provide decision support under a
dynamic use case scenario that includes (i) continuous updates
and analysis of dependencies, (ii) identification of the general
types of dependencies, and (iii) dependencies as a key driver of
the decision support for the product releases.

Keywords-Dependencies between requirements; Data analytics,
Natural language processing, Machine learning, Weakly super-
vised learning, Advanced dependencies, Optimization, Release
planning

I. INTRODUCTION

In an industry case study, in the telco domain, Carlshamre
[S] showed that a large percentage of requirements can have
one or more dependent relationships. Also, recently, in auto-
motive systems, Vogelsang et al. [28] found that at least 85%
of the analyzed vehicle features depend on each other. These
findings emphasize how requirements have to be designed or
implemented, how they influence the cost and value of other
requirements and how they increase and decrease the overall
implementation efforts when considered in conjunction.

Many studies in the past have recognized the difficulty as-
sociated with requirements dependency extraction in software
engineering [9]],[5],[7],[241,[23],[31]]. Besides their extraction,
one fundamental problem related to requirement dependencies
is that, similar to the requirements themselves, dependencies
evolve and change over time. Maintaining and tracking these
changes is equally important. If critical dependencies are

missed then this would likely result in reworking in the
design, development and testing of the software. Furthermore,
ignoring dependencies would reduce the value (for the user)
of product releases. In the past, various techniques including
Natural Language Processing (NLP) [6]],[24], Fuzzy logic [23]],
Predicate logic [29] was utilized to extract dependencies.
Recent study [13], has applied supervised machine learning
methods on requirements specific artefacts. The focus of
this study has been mainly on pair-wise dependencies from
traceability perspective with no emphasis on the types of
dependency and various degrees of dependencies. Since some
dependencies might be important while others optional or good
to have in the product, dependencies need not be limited to
include just two requirements. Additionally, dependencies can
also result from value and effort synergies when considered in
conjunction. Hence, it is necessary to focus on these aspects
of research and dependencies across multiple requirements.

While dependency extraction is important, release planning
refers to the problem of selecting requirements based on the
dependencies. A company has to consider and balance the
trade-off between all these factors during release planning
where the emphasis is to maximize the customer satisfaction
and value synergies, minimize the effort synergies while
choosing the most dependent requirements for any given
release. Although there have been studies to extract value and
cost based dependencies [12],[[L1], there are no studies which
consider them as synergies while selecting the requirements.
If requirement dependencies are not tracked and maintained
in the life cycle of the software development then, it would
not be possible to facilitate dependency centred release plans,
which, as an end result, would eventually maximize the value
of the release and reduce the penalty when the dependencies
are missed.

In this paper, as a first step towards broadening the scope
of dependency analysis and maintenance, we propose (i) a
systematic approach for extraction of mutual requirements
dependencies and its initial evaluation utilizing weakly su-
pervised learning, (ii) extend this approach to cover more
general types of dependencies, and (iii) model dependency
management as a multi-objective optimization problem, which
balances value and effort synergies, penalties (if any) from
violating dependency constraints for release decisions.

The remainder of the paper is structured as follows: Section
IT elaborate related work. Background and methodology are
explained in Sections III and IV respectively. Section V



explains the results. Section VI provides details on the threats
to validity. Finally, Section VII presents a plan for future
research.

II. RELATED WORK
A. Literature analysis

J.N.och Dag et al. [24] analysed requirements textual
content and focused on the dependency identification based
on similarity measures, such as Dice, Jaccard, and Cosine
coefficients. However, he focused only on the “similar” depen-
dency type and mentioned linguistic methodology and domain-
specific vocabulary use as future work. Chichyan et al. [7]
discussed how the semantics of unstructured requirements
can be deduced to find the dependency types using Natural
Language Processing (NLP) techniques. Ngo-The et al. [23]]
used fuzzy logic to model the uncertainty concerning the
identification of structural dependency constraints between
requirements. Weston et al. [29]] applied predicate logic to
detect conflicting requirements.

Goknil et al. [12],[L1] explored requirement dependencies
in greater depth from a traceability perspective for change
impact analysis. This author used formal semantics of relation
types to infer new relations and determines contradicting
relations in the requirements documents. This research utilized
semantic web technologies to identify conflicts-with, refines
and contains relations. Although a tool was developed as part
of this work, which provided various modules to identify,
maintain and visualize the dependency network as a graph,
the approach is theoretical in nature and only applied on a toy
data set lacking industrial and empirical study.

Semantic cohesiveness between features was considered
and studied for the theme-based release planning [16]. For
mobile apps, optimized super app functionality was proposed
by Nayebi et al. [22]]. However, these studies do not address
dependency centred release planning over a period of software
development life cycle and software evolution.

Researchers have also explored requirement dependencies
from traceability perspective and utilized NLP and machine
learning to a great extent on requirements artefacts [13].
However, to our knowledge, this study is limited to extract
the trace and not the structural type of dependency among the
requirements, which is a focus of our research. We base our
research on the fact that requirement dependency [4] specific
research focuses on relationships and their types between
a specific type of trace object — namely, explicitly stated
requirements.

B. Survey of Practitioners

In order to identify and focus on the difficulties faced by
software industry professionals with respect to requirements
dependencies extraction and maintenance, we conducted a
surveyﬂ which attracted seventy responses. Of these partic-
ipants, 24% were managers, 52% were developers, analysts
or testers, while the rest were students and others. As an
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Fig. 1. Ranking of occurrence by types of dependency

affirmation, more than 80% of the participants agreed or
strongly agreed that identifying the strength of dependencies is
important, dependency type extraction is difficult, dependency
information has implications on maintenance and ignoring
dependencies has a significant impact on project success [8]].
Interestingly, the survey also revealed that more than 50% of
the participants agreed that dependencies across multiple fea-
tures are found frequently. More than 90% of the participants
also confirmed that they do not use any automation tool to
extract and maintain the dependencies. The respondents were
asked to rank dependency types based on the frequency of
their occurrence. As shown in Figure [l REQUIRES and
SIMILAR types are found to occur most frequently.

III. BACKGROUND

Maalej et al. [17] projected a paradigm shift in require-
ments engineering and software evolution towards data-driven
processes. In our research, we follow this shift to study data-
driven techniques to extract basic (binary), and advanced de-
pendencies (types of dependencies) between requirements. We
also outline the use of the dependencies for the optimization
of the release decisions. In this section, we provide details on
terminologies and concepts used in this paper.

A. Basic Dependencies (Binary: dependent or independent)

For a set of requirements R, and any pair of require-
ments (r,s) € R, the symmetric relationship is called a
basic dependency, if there is at least one type of dependency
(REQUIRES, SIMILAR, OR, AND, XOR, value syn-
ergy, effort synergy) between r and s (independent of type,
direction, and strength).

B. Advanced Dependencies

Assuming, we can extract basic dependencies, the second
research question is to extract the type of the dependency.
Details of these types are as following.

Definition: For a set of requirements R and any pair of
requirements (7, s) € R, if r requires s, or s requires r, then,
r and s are in a relationship called REQUIRES.
Definition: For a set of requirements R and any pair of
requirements (r, s) € R, if r and s are required in conjunction,
then, r and s are in a relationship called AN D.

Definition: For a set of requirements R and any pair of
requirements (r,s) € R, if r and s are semantically similar,
then, r and s are in a relationship called SIMILAR.



Definition: Violation of structural dependencies (like
REQUIRE, AND etc.) is supposed to create a penalty.
The degree of penalty depends on the impact of the violation
to the user. We define the penalty() function on a nine-points
scale (0-9 : low to high).

Definition: A set RV C R of requirements creates a value
(or effort) synergy dependency values() (respectively efforts())
if offering the requirements in the same release increases
the value (respectively reduces the effort of implementation)
when compared to the sum of the value (or effort) of the
individual requirements.

C. Weakly supervised learning

Weakly supervised learning (WSL) [32] combines the ben-
efits of supervised learning and unsupervised learning. It is
motivated by the high cost of data-labeling. There are various
strategies for using unlabeled data to improve the performance
of standard supervised learning algorithms, especially in the
situation where a small amount of labelled data is available,
which is insufficient to train a good learner, while abundant un-
labeled data are available. WSL is an umbrella term covering
a variety of techniques, which attempt to construct predictive
models by learning with weak supervision. This approach is a
form of conservative co-testing strategy [21] where, for each
iteration, an unlabeled example is labelled if the two classifiers
agree on the labeling [26].
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Select samples with consistent labels in
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Fig. 2. Main steps of our WSL based approach (NB: Naive Bayes, RF:
Random Forest) . . ) .
As shown in Figure [2 firstly, machine learning models

(NB:Naive Bayes and RF:Random Forest) are trained on the
original data set. Further, these classifiers are used to classify
the unlabeled data samples. The strategy is to extract just the
data samples on which all the classifiers achieved consistent
results. If all classifiers have predicted the same class label for
a given data point (sample), then this label is assigned as a
pseudo annotation.

IV. METHODOLOGY

In this section, we first introduce the research questions.
Thereafter, we describe the research method along with the
data preparation, classifiers and evaluation phases.

A. Research questions

The approach is to utilize NLP, supervised as well as weakly
supervised learning algorithms to automate the extraction of

advanced requirements dependencies. The proposed research
is organized around the three research questions (RQs).

RQ1 How accurate are supervised machine learning methods
RF, SVM, and NB and WSL at extracting pairs of basic
dependencies?

RQ2 How accurate are supervised and WSL at extracting
advanced requirements dependencies?

RQ3 How effective and how efficient is the usage of interactive
swarm intelligence for determining the functionality of
the upcoming software release?

Each RQ’s output is input to the next RQ. Hence, RQ3
utilizes fine-grained dependencies information from RQ2 to
perform release optimization, which has objectives specific
to dependencies between requirements. We plan to utilize
swarm intelligence, a collection of bio-inspired optimization
algorithms, for this RQ. These algorithms have been proven
successful in a large number of application engineering, image
processing and data mining [30] providing an option for
performing optimization in a interactive mode with the release
decision-maker. The logical structure of our approach is shown
in Figure 3] The following describes the essential steps of the
method and how it was applied to our data.

B. Data Preparation

Firstly (Step @), raw data from the textual requirements
information (or document) is processed to extract the re-
quirement statements. Following this extraction, the manual
annotation process (step ®) must be carried out. To proceed
with text classification (generating classifiers), the data set
is passed through a NLP pipeline. Thereby, the data is first
tokenized, eliminating possible stop words (English dictionary
based), and then lemmatized using standard snowball Stemmer
and WordNet Lemmatizer [[18]] (step ©, @, ©).

C. Classifiers

To solve RQl and RQ2, we utilized three classifiers:
Random Forest (RF), Naive Bayes (NB) and Support Vector
Machine (SVM) (step ®). Multi-class annotations were also
utilized to further develop multi-class classifiers (step @).
While NB algorithm searches for the best linear separator
according to some criterion, SVM and RF have been used
successfully and prominently for text classification [18]. We
utilized Python’s scikit-learn library [3] for implementation.

While RF and NB classifiers performed well with basic
settings, SVM needed additional tuning on the hyperparame-
ters. Considering the adaptive capacity of SVM, Radial Basis
Function (RBF) was selected as the kernel function, penalty
parameter C=2.0 and kernel parameter gamma =2.0 to achieve
better classification accuracy [14].

D. Evaluation

A good validation technique should not overestimate or un-
derestimate the model performance on unlabelled data. Since
the annotated data set was small (a balanced 300 data samples,
where each data sample represents a pair of requirements), we
utilized a more robust sampling technique called k times k-fold
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cross-validation (CV) technique to eliminate possible bias in
the classifiers. This validation technique has been proven as the
most unbiased validation technique, which can be effectively
utilized in the event of smaller training data sets to avoid
overfitting [271,[201,[14]]. We utilized 10 times 10-fold CV
technique for this study.

V. RESULTS
A. Data preparation

For this study, the sample data for evaluation were taken
from the public data set: PURE [10]. The Ertms/ETCS [1]]
functional requirements specification document (SRS) con-
sisted of 199 requirements with average sentence length of 10
words. With these n = 199 requirements, we ended up with
n(n—1)/2 = 19,701 potential pairwise dependencies. In order
to generate the ground truth data, we manually annotated the
550 data samples since this data belonged to a public PURE
library [10]. Two of the authors that were engaged in this
activity independently first studied the project utilizing the
description in the SRS document. For more effective manual
annotation, the pair-wise cosine similarity was utilized as a
starting point for the manual annotation. The final data set
consisted of the samples on which both the annotators agreed
upon the label. The term original data set is used to describe
this balanced data set of 300 samples.

In order to ready the data for classification, it was first tok-
enized then all the English stop words were removed and each
token was then lemmatized to perform classification. Further,
the pairs with higher cosine similarity were picked first to
check about possible dependencies. Finally, a combination of
higher and lower cosine similarity pairs was randomly chosen
to generate 550 annotations. Out of them, 367 were annotated
as independent, 150 as dependent, 33 could not be classified.
For multi-class annotations, 38 were of REQUIRFE type, 89
SIMILAR, 19 AND, 3 OR , and 1 XOR. At this stage,
data was now ready for classification.

B. Stage 1: Basic dependency extraction

For the Binary (basic dependency) classifier, the initial data
set (after annotation) had a class imbalance. We extracted all
150 data samples (with class = 1, dependent) and randomly
extracted 150 independent data samples from the pool of 367

Structure of our research approach

independent samples. Following the methodology explained in
Section IV, we generated classifiers with NB, RF and SVM.

Averaged (from 10 times 10-fold CV) results for the classi-
fiers are shown in Table [I| (a). Of the three, SVM has the
highest precision and F1 score. It implies that of all the
classifiers SVM could classify the valid dependent pair of
requirements most accurately. However, all three classifiers
have lower recall, and higher precision rate, which means
that they lack the ability to identify the possible dependent
pairs correctly. Additionally, all three classifiers generated
approximately 0.7 F1 accuracies. We concluded that all of the
present classifiers could be utilized as an efficient prediction
model. However, to improve accuracy, we analyzed the effect
of our proposed WSL mechanism.

TABLE I
RQ1: AVERAGE CLASSIFIER ACCURACY FROM 10 TIMES 10-FOLD CV
BEFORE (A) AND AFTER (B) UTILIZING PSEUDO-LABELLED DATA USING
WSL ( SEE FIGURE. CLASS 0: INDEPENDENT, 1: DEPENDENT

Classifier Precision Recall F1
Score

a) Original data set | RF 0.79 0.60 0.67
(#Class 0 = 150) NB 0.77 0.70 0.73
#(Class 1 = 150) SVM 0.85 0.68 0.74
b) Original data set | RF 0.90 0.81 0.85
+ WSL sample

(#Class 0 = 300) NB 0.89 0.85 0.87
(#Class 1 = 300) SVM 0.94 0.85 0.89

C. Pseudo labeling using Weakly supervised learning

In order to (pseudo) label the rest of the 19,000 requirement
pairs, RF and NB classifiers created from the original data set
were utilized (Figure [2)). Since running classifier models have
a non-deterministic characteristic, multiple instances for each
of them were created. Only the samples (11,141) with consis-
tent classification were finally selected. This new annotation
resulted in pseudo labelled samples. The updated original data
set, called as updated data set, was then tested using 10 times
10-fold CV through classification.

Results for various data sample sizes are shown in the Table
[l (b). From the results, we concluded that WSL classifiers



TABLE II
RQ2: AVERAGE CLASSIFIER ACCURACY FROM 10 TIMES 10-FOLD CV
BEFORE (A) AND AFTER (B) UTILIZING PSEUDO-LABELLED DATA USING
WSL. CLASS 1: REQUIRES,2: SIMILAR, 3: OTHERS

Classifier | Precision | Recall F1
Score
a) Original data RF 0.67 0.65 0.61
(#Class 1,23 =38) | NB 0.65 0.60 0.59
SVM 0.76 0.69 0.69
b)  Original & | RF 0.85 0.81 0.81
pseudo-labeled data
(#Class 1,23 =76) | NB 0.83 0.81 0.81
SVM 0.88 0.87 0.87

performed better compared to those original learners. The
average CV showed more than 10%+ better performance
utilizing just 300 pseudo labelled data samples. Additionally,
all three classifiers demonstrated exceptional improvement
while SVM performed well overall.

D. Stage 2: Extraction of the dependency type

To address RQ2, we utilized 38 data samples each for the
three classes (114 in total). For the purpose of demonstrating
our findings, we annotated a multi-class subset of original data
set is referred to as baseline multi-class data set in this paper.
Utilizing this data set, baseline accuracies for RF, NB and
SVM classifiers were generated. Results are shown in Table
(a).

We chose to report the weighted average results for the
multi-class classifiers, because when binary classification met-
ric is extended to multi-class problems, the data is treated as
a collection of binary problems, one for each class. There are
then a number of ways to average binary metric calculations
across the set of classes, each of which may be useful in some
scenario. Where available, it is recommended to select the
weighted average parameter [2].

Analysis of the statistics revealed that the accuracy of all the
classifiers remained in the same range (approx 0.6). However,
SVM and RF performed well whereas NB demonstrated poor
recall and 10-fold CV score. The poor performance of the
classifiers could be attributed to a limited and small data set
used for classification.

The results of utilizing WSL on the baseline Multi-class
data set are documented in Table [lI] (b). The balanced data set
for three different classes were extracted randomly for classi-
fication from a pool of 4,460 data samples from WSL steps
(Figure 3) on 19,000 data samples. This three class balanced
data set consisted of 228 data samples (=76*3). Statistical
results show that NB and RF performed comparatively well
but the performance of SVM was exceptional. Although this
improvement in the accuracy is welcoming and supportive of
WSL, closer evaluation is required in the future to affirm the
improvement in the performance.

VI. THREATS TO VALIDITY

The results are preliminary as we studied the approach
just for one data set. We will perform a more comprehensive
analysis with data from PURE in the future. In addition, we
have attracted industrial data with access to domain experts to
further check the validity of the approach.

For RQI, the size of 500 samples is relatively small when
compared to the size of the overall sample set. We proposed
WSL to overcome this deficit. For the actual annotations, each
sample was annotated twice. In case of inconsistency, samples
were not considered. Annotating test data from applying WSL
is considered one way to overcome the annotation bottleneck
[32]. For that, we only considered samples with consistent
classification from all the classification runs.

For RQ2, the annotated data is small and the results might
be biased. Also, this might have an impact on the WSL created
output. We plan to evaluate our approach with additional
annotations, which are specific to a few selected classes.

k-fold CV is one way to validate results. There is a bias-
variance trade-off associated with the choice of k in k-fold
cross-validation. Given these considerations, one performs k-
fold cross-validation with k=5 or k=10, as these values have
been shown empirically to yield test error rate estimate [15].
We applied k=10. In addition, we applied it multiple times to
overcome the impact of the fold selection. However, we need
to test our approach with domain experts to see how valid the
results are.

The quality of the textual content describing requirements
is one of the key performance factors of our approach. Also,
the overall use of this approach in different domains needs
thorough evaluation, which is part of the future research
agenda. To increase the semantic foundations, we envision to
address this problem by utilizing evolving ontologies.

VII. FUTURE RESEARCH AGENDA

In this paper, we utilized a WSL based labeling approach,
a technique which exploits unlabeled data without querying
human experts. In the future, we will extend this approach
to utilize active learning, which is based on the approach
of utilizing minimal labeling effort by oracles (eg: Human
expert), such that the labeling cost of training good model is
minimized. This is a robust approach, which is a combination
of active learning and co-testing. In particular, we will let
oracle label unlabeled examples on which the disagreement
within the multiple classifiers is the greatest.

Besides the evaluation of more documents taken from the
public PURE library [10], we are working on the data from
the industry. Our industry collaborator has an interesting
setup of where the product has both software, as well as
hardware components and additional dependencies that stem
from firmware. This company also participated in our survey
(Section I1.B) and has already provided first data set.

As part of the extended research agenda, we will evaluate a
hybrid approach which is a combination of NLP’s information
extraction and WSL mechanisms. Also, the agenda is to



extend this approach to identify dependencies among multiple
requirements and not just pair-wise requirements.

A. Dependency aware release decisions

Release planning is a wicked problem [<25], i.e. the formu-
lation of the problem is cognitively difficult and there is no
easy method to decide on a single solution. We approach the
wickedness of the release problem by applying an evolutionary
modelling and interactive problem-solving mechanism. This
includes interaction with the user and decision-maker. Interac-
tive optimization approaches acknowledge existing limitations
of modeling and parameter settings. Also, they value the user’s
expertise in the application domain [19].

Overcoming the simplistic notion of just maximizing a value
function defined from isolated requirements, the new problem
formulation examines requirements dependencies and makes
them the driver of decisions. The novelty of this optimization
approach is, to bundle highly dependent requirements and
make them the core content of releases. Therefore, the op-
timization is multi-objective with three optimizing functions:

>

All structural dep’s n

>

All value synergies n

>

All ef forts synergies n

Minimize F1 = penalty(n)

Mazimize F2 = values(n)

Minimize F3 =

ef fort(n)

F1 is defined on the product set R x R, which results
in a quadratic function. The other two objectives F2 and
F3 are defined on the power set of R. These functions are
very difficult to formulate, and applying swarm intelligence
is expected to handle both non-linearity and non-convexity of
the set-defined synergy functions: value and effort respectively.
The functions describe the added value and the reduced effort
when compared with the case of an isolated selection of
requirements.
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